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a b s t r a c t

Recurrence quantification analysis (RQA) has emerged as a useful tool for detecting singularities in non-
stationary time-series data. In this paper, we use RQA to analyze the velocity–time data acquired using
laser doppler anemometry (LDA) signals in a bubble column reactor for Single point and Multipoint point
spargers. The recurring dynamical states within the velocity–time-series occurring due to the bubble and
the liquid passage at the point of measurement, are quantified by RQA features (namely % Recurrence, %
Determinism, % Laminarity and Entropy), which in turn are regressed using support vector regression
(SVR) to predict the point gas hold-up values. It has been shown that SVR-based model for the bubble
column reactor can be potentially useful for online prediction and monitoring of the point gas hold-up
for different sparging conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Bubble columns are very widely used in chemical process
industry because of simple construction and ease of operation. In
bubble columns, the gas phase is in the form of dispersed bubbles
in a continuous liquid-phase. The gas hold-up directly decides the
reactor volume depending upon the phase in which the reaction
occurs. Indirectly, the gas hold-up profiles govern the liquid-phase
flow pattern and hence the rates of mixing, heat transfer and mass
transfer. Thus an adequate knowledge of gas hold-up and its profile
is needed for modeling, design and scale-up of bubble column
reactors. Therefore, it becomes essential to establish a model that
can predict and monitor the point gas hold-up values on real-time
basis at various axial and radial locations of the column reactor.

With the help of advanced experimental techniques, it is now
possible to take time dependent measurements at various loca-
tions in the column. Analysis of such time-series data (velocity,
pressure, capacitance, conductivity, etc.) is seen to yield more
meaningful information about system characteristics on real-time
basis. However, the measured signals generally show non-station-
ary characteristics as may be seen from their Fourier spectra which
do not show consistency in frequency behavior over different time
segments of data. This has thus involved the search for more pow-
erful mathematical tools, which take into account the non-station-
ary features in the data and detect, analyze and cope with it. In this
ll rights reserved.
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context, a recently introduced concept of recurrence quantification
analysis (RQA), which relies on the presence of deterministic/
recurring structures underlying the data, has been introduced into
this paper (Ekmann et al., 1987; Castellini and Romanelli, 2004;
Marwan, 2003; Webber and Zbilut, 2005; Zbilut et al., 2004). How-
ever, besides RQA, other non-linear time-series analysis techniques
like chaos (Van den Bleek and Schouten, 1993; Letzel et al., 1997;
Gandhi et al., 2007a) and wavelet (Kulkarni et al., 2001; Jade et al.,
2006) have been used for the various studies pertaining to design
of multiphase systems. Practically, the approach based on chaos
is very similar to RQA. Both the approaches are based on the quan-
tification of the phase-space plot constructed from the time-series.
RQA is specifically based on the qualification as well the quantifi-
cation of the number and duration of the recurrences, while, chaos
analysis is based on the quantification of the extent of non-linear-
ity (Lyapunov exponent and Kolmogorov entropy) of a non-linear
dynamical system. Moreover, the main advantage of the RQA is
that it provides useful information even for a short time-series.
On the other hand wavelet transform (WT) is an appropriate math-
ematical function (based on wavelets) used to divide a given func-
tion or continuous-time signal into different frequency
components and study each component with a resolution that
matches its scale. Using a variable-size window in a time–fre-
quency plane, WT provides an efficient approach by which both
time and frequency resolutions are adjusted in an adaptive fashion.
It uses a window that narrows when focusing on small-scale or
high-frequency features of the signal and widens on large-scale
or low-frequency features, analogous to a zoom lens. Thus, WT is
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also known also as a mathematical microscope. Very recently both
wavelet transformation and RQA have been employed by Sen et al.
(2008) for analysis of cycle-to-cycle pressure oscillations in a diesel
engine. The study found that the performance of both methodolo-
gies were similar. It can be observed that RQA requires the original
time-series to be reconstructed by suitably choosing the attractor
dimension and time delay, whereas we can directly transform
the original time-series into frequency domain by wavelets. How-
ever, it can be observed that RQA provides a very small number of
most informative features whereas wavelet transformation pro-
vides a large number of wavelet coefficients. In such a case, it be-
comes essential to further process the wavelet coefficients to
obtain informative features like singularities (Kulkarni et al.,
2001) or local Hölder exponents (Jade et al., 2006). Moreover,
recurrence analysis facilitates the qualitative identification of the
state of the multiphase system in form of recurrence plots (RPs),
thereby, possibly exploring the applicability of the RPs in qualita-
tive identification of regime of operation and fault diagnosis for
bubble column reactors. Thus, for the present study, it was thought
desirable to explore the applicability of recurrence analysis meth-
od for the first time in design of a multiphase system.

Recent applications of RQA include examples in the field of bio-
informatics (Zbilut et al., 2002), financial time-series analysis (Jor-
ge, 2004) and for online damage detection within the system
(Nichols et al., 2006). This technique is derived from non-linear
dynamics (Schuster and Just, 2005; Kang et al., 2000), and is based
on a graphical description of system’s dynamics dubbed as the
recurrence plot (RP). In short, a RP provides a global, qualitative
picture of the correlations between the states of a time-series over
all available time-scales. Further, it is possible to reveal underlying
structures in the time-series data (determinism) using this ap-
proach, which is not readily available to many other approaches,
such as methods involving linear transformations of the data (e.g.
the Fourier transform). The quantification analysis of the recur-
rence plots involves estimation of a set of parameters (recurrence
parameters) that describe the structures in the plots such as single
dots and diagonal, vertical and horizontal lines.

LDA actually measures the instantaneous liquid-phase veloci-
ties (Buchhave et al., 1979; Joshi et al., 1996; Kulkarni et al.,
2001; Scott, 1974). Bubbles pass through the measurement volume
and create a corresponding time-gap (noted hereafter as arrival
time-gap) that can be easily identified from the markings on the
Fig. 1. LDA series: b
time-series. Fig. 1 shows a typical LDA signal acquired for one of
the positions in bubble column reactor. It is known that while a
bubble ascends in the vertical direction, it carries a liquid envelope
associated with it. Therefore, the instantaneous liquid velocity
associated with a bubble can be considered as the gas-phase veloc-
ity. In this way depending on the size and the rise velocity of the
ascending bubble, corresponding arrival gap and the velocity
amplitude is obtained along the time as the LDA measurements.
The main focus of our application is in quantifying the dynamically
recurring patterns/states within the local instantaneous velocity–
time data for a two-phase bubbly flow system. These recurring pat-
terns as a result of the passage of bubbles and liquid eddies of dif-
ferent sizes through the point of measurement largely depend
upon the type of sparger and show variation over the column
cross-section. The recurring states are thus related to the local
hydrodynamic properties of the system viz. gas hold-up and bub-
ble size. The relation between the recurring dynamical states from
LDA time-series using RQA technique and the local hydrodynamic
properties is expected to possess a greater sensitivity to changing
dynamics than to the linear approaches such as frequencies. In this
work, support vector regression (SVR) [a well-known machine
learning algorithm (Vapnik et al., 1996; Gunn, 1998; Smola and
Scholkopf, 1998 )], has been used to relate recurrence parameters
to gas hold-up values. Recent application of SVR in design of mul-
tiphase reactors can be found in Jade et al. (2006) and Gandhi et al.
(2007a,b).

This entire modeling approach is detailed in the form of an algo-
rithm as shown in Fig. 2. The manuscript is organized as follows:
The concept and theory of RQA and SVR are discussed in Sections
2 and 3, respectively, while in Section 4 we briefly discuss the
experiments. The characteristic variation of the statistical parame-
ters for different data sets and their relation with the local gas
hold-up are discussed in Section 5. We also analyze the results ob-
tained under various conditions and discuss possible applications.

2. Recurrence quantification analysis (RQA)

2.1. Recurrence plots

Recurrence is a fundamental property of dissipative dynamical
systems (Schuster and Just, 2005). Small disturbances in parame-
ters or operating conditions in such a system can cause exponential
ubble passage.



Fig. 2. Flowchart describing modeling steps.
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divergence of its state, but the system will come back to a state
that is arbitrarily close to a former state and pass through a similar
evolution. Ekmann et al. (1987) introduced the concept of recur-
rence plot (RP), as a graphical tool that can visualize such recurrent
behaviour in a phase-space of a dynamical system. A phase-space
is usually a high dimensional space and can only be visualized by
projection onto a smaller two- or three-dimensional sub-spaces.
RPs enable us to investigate the m-dimensional phase-space trajec-
tory through a two-dimensional representation of its recurrences.

Mathematically, given a scalar (one-dimensional) time-series
x(i) = 1,2,3,. . .N an embedding procedure will form a vector, Xi with
m the embedding dimension and s the time lag. RPs are symmet-
rical array of these vectors placed at (i,j). Whenever a point Xi on
the trajectory is close to another point Xj, the closeness between
Xi and Xj is expressed by calculating the Euclidian distance between
these two normed vectors, kXi-Xjk 6 r where r is a fixed radius.
With the aid of the analysis being carried by Heaviside function,
H (Kang et al., 2000), if the distance falls within this radius, the
two vectors are considered to be recurrent and graphically indi-
cated by a white region. Thus, the distance matrices convey all of
the relevant information necessary for the global reconstruction
of a given system. Such an RP can be mathematically expressed
as

Ri;j ¼ Hðr � kXi � XjkÞ; Xi 2 Rm; i; j ¼ 1; . . . S ð1Þ

Detailed mathematical explanation on the same can be found in
Marwan (2003) and Webber and Zbilut (2005).

2.2. Determining parameters for RQA

The graphical representation of RPs may be difficult to evaluate,
since they are considered as qualitative tools to detect hidden
rhythms graphically. However, the RPs can be made quantitative
(Zbilut et al., 2004; Webber and Zbilut, 2005) by defining specific
rules to automatically extract certain recurrence features. The clo-
ser inspection of the RPs reveals small-scale structures (the tex-
ture), which are single dots, diagonal lines as well as vertical and
horizontal lines. These structures are taken into account and quan-
tified by the descriptors used in RQA. These descriptors include:
%recurrence,%determinism, entropy and % laminarity.

In particular: Single, isolated recurrence points can occur if states
are rare and if they do not persist or fluctuate heavily. These dots
are counted in the quantitative descriptor %recurrence (%REC)
defined as the number of recurrent points per total triangular area,
excluding the central diagonal (which represents the distance
between each embedded vector and itself known as recurrence
matrix, Ri,j) and given as,

%REC ¼ 1
w2

Xw

i;j¼1

Ri;j ð2Þ

where w is the length of the time-series under analysis. Embedded
processes that are periodic have higher percent recurrence values
than processes that exhibit aperiodic dynamics. It can range from
0% (no recurrent points) to 100% (all points recurrent).

The second recurrence descriptor is %determinism (%DET) and
measures the proportion of recurrent points forming diagonal line
structures. Denoting Nl the number of lines (diagonal) of length l,
percent determinism is given by,

%DET ¼
Xw

l¼lmin

lNl

,Xw

i;j

Ri;j ð3Þ

Diagonal line segments must have a minimum length, lmin (usually
lmin = 2) defined by the line parameter. The diagonal length mea-
sures how long the lines will be close to each other and can be inter-
preted as the mean prediction time. Periodic signals (e.g. sine
waves) will give very long diagonal lines, whereas chaotic signals
(e.g. Hénon attractor) will give very short diagonal lines, and sto-
chastic signals (e.g. random numbers) will give no diagonal lines
at all (unless parameter radius is set too high).

The third recurrence descriptor is entropy (ENT), which is the
Shannon information entropy of all diagonal line lengths distrib-
uted over integer bins in a histogram. ENT is a measure of signal
complexity and is calibrated in units of bits/bin. Individual histo-
gram bin probabilities (P(l)) are computed for each non-zero bin
and then summed according to Shannon’s equation.

Entropy ¼ �
Xw

l¼lmin

PðlÞlog2PðlÞ ð4Þ

As the logarithms are to the base 2, the entropy can be interpreted
as number of bits. For simple periodic systems in which all diagonal
lines are of equal length, the entropy would be expected to be 0.0
bits/bin (narrow diversity in diagonal line lengths) but relatively
high within chaotic windows (wide diversity in diagonal line
lengths).

The fourth recurrence descriptor is % laminarity (%LAM). A verti-
cal/horizontal line marks a length in which a state does not change
or changes very slowly (trapped state). These are called laminar re-



Fig. 3. Two-dimensional representation of a hypothetical system in m-dimensional
phase-space with a display of points (closed dots) surrounding a single reference
point (white dot). (1) radius = 1, (2) radius = 2, (3) radius = 3, (4) radius = 4.

Fig. 4. A schematic illustration of SVR using e-sensitive loss function by Nandi et al.
(2004).
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gions and are counted in the descriptor laminarity (%LAM). It is
analogous to %DET except that it measures the percentage of recur-
rent points comprising vertical line structures rather than diagonal
line structures. Thus, it is the ratio of the recurrence points forming
the vertical structures and the entire set of recurrence points.
Denoting Nv the number of lines (vertical) of length v, percent lam-
inarity is given by,

%LAM ¼
Xw

v¼vmin

vNv
Xw

i;j

Ri;j

,
ð5Þ

However, an appropriate estimation of the aforementioned RQA
parameters depends on the phase-space plot, which in turn is con-
structed based on an appropriate choice of embedding dimension
(m), time delay (s) and radius (r).

2.3. Choice of time delay (s)

An attractor/phase-space represents the time evolution of a
hydrodynamical system. Choice of the time delay is crucial, since
time delay cannot be too small so that axes are closely related
while on the other hand it cannot be too large to avoid the loss
of information between axes. In this study, initially the delay time
was decided based on the criteria of the first local minimum in mu-
tual information function, however, this approach resulted in wide
variation in the values of the time delay and so was with the final
RQA parameters and thereby, establishing SVR-based regression
function with poor prediction accuracy. Thus, in order to avoid
such discrepancy, it was thought desirable to choose the delay time
of 1 based on the Takens theorem (Takens, 1981). Since the LDA
based velocity–time-series was acquired at 100 Hz, the time delay
of 1 in that case stands out to, 1/100 = 0.01 s. With this every con-
secutive point of the time-series constitutes the delayed vector.

2.4. Choice of embedding dimension (m)

Even after a suitable delay time has been found, it should be ta-
ken into account to ensure that the attractor is fully unfolded in the
state space with no crossing of orbits/trajectories of the attractor. If
m is selected too small, the delayed phase-space cannot completely
unfold the attractor such that false nearest neighbours will occur.
By sequential increase of the embedding dimension and computa-
tion of the corresponding percentage of false neighbors, the mini-
mal embedding dimension can be easily obtained.

2.5. Choice of radius (r)

In effect, the radius parameter implements a cut-off limit
(Heaviside function) that transforms the distance matrix (Euclidian
distance) into the recurrence matrix (RM). Fig. 3, a ‘‘shotgun plot”,
provides a conceptual framework for understanding why an
increasing RADIUS captures more and more recurrent points in
phase-space. It represents a hypothetical system in m-dimensional
phase-space with a display of points (vector points) surrounding a
single reference point (white dot). The points falling within the
smallest circle (radius = 1 distance units) are the nearest neighbors
of the reference point. All such points are recurrent with the refer-
ence point. The second concentric circle (radius = 2 distance units)
includes a few more neighbors, increasing the number of recur-
rences from 5 to 9. Increasing the radius further (radius = 3 or 4 dis-
tance units) becomes too inclusive, capturing an additional 15 or
40 distant points as nearest neighbors when, in fact, they are not.
Thus, it is desirable to choose the smallest possible radius and thus,
based on the suggestions from the literature (Zbilut and Webber,
1992) this threshold should be a few percent of the maximum
phase-space diameter and should not exceed 10% of the mean or
the maximum phase-space diameter.

3. SVR-based modeling

3.1. Mathematical modeling

The support vector regression (SVR) is an adaptation of a re-
cently introduced statistical/machine learning theory known as,
support vector machines (Vapnik et al., 1996). The objective over
here is to build a e-SVR model (Vapnik et al., 1996) to fit a regres-
sion function, y = f(x), such that it accurately predicts the outputs
{yi} corresponding to a new set of input examples, {xi}. In e-SVR
model, e represents (loss function) the radius of the tube located
around the regression function, f(x) (Fig. 4) and the region enclosed



Table 1
Design and operating conditions of LDA measurement

Sr.
No.

Sparger
type

Superficial gas
velocity (m/s)

r/R (�) z/R (�) Number of data
points

1 SPS 0.02 0–0.933 0.4 & 5.2 30
2 MPS 0.02 0–0.860 0.4 & 2.8 23

Fig. 5. Recurrence Plot (RP) of LDA time-series for MPS (A) r/R = 0, Z/R = 2.8,
(B) r/R = 0.86, Z/D = 1.4.
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by the tube is known as ‘e- insensitive’ zone (Gunn, 1998). The loss
function assumes a zero value in this zone and as a result it does
not penalize the prediction errors with magnitudes smaller than
e. To fulfill the stated goal, SVR considers the following linear esti-
mation function in the high dimensional feature space (Smola and
Scholkopf, 1998),

f ðx;wÞ ¼ ðw � /ðxÞ þ bÞ ð6Þ

where, /(x) = function termed feature and (w�/ (x)) the dot product
in the feature space, F, such that / (x) ? F, and w 2 F. Thus after
algebraic transformation the objective function Eq. (6), gets con-
verted to convex optimization problem (Gunn, 1998; Smola and
Scholkopf, 1998; Vapnik et al., 1996). The primal form of the opti-
mization problem is given as,

Maximize ðLðað�Þi;j Þ ¼
XN

i¼1

yiðai � a�i Þ � e
XN

i¼1

ðai þ a�i ÞÞ ð7Þ

� 1
2

XN

i¼1

XN

j¼1

ðai � a�i Þðaj � a�j Þð/ðxiÞ � /ðxjÞÞ

Subject to constraints C P ai;a�i P 0 and
PN

i¼1ðai � a�i Þyi ¼ 0
where, C = cost function employed to obtain a trade-off between
the flatness of the regression function and the amount to which
deviations larger than e can be tolerated. Solving this problem
Eq. (7) by convex quadratic programming (QP) gives the value of
the coefficients a and a�i . Owing to the specific character of the
above-described quadratic programming problem, only some of
the coefficients, (a�a�i Þ, are non-zero and the corresponding input
vectors, xi, are called support vectors (SVs). These SVs are known to
be as the most informative data points that compress the informa-
tion content of the training set, thereby representing the entire SVR
function. The coefficients a and a�i have an intuitive interpretation
as forces pushing and pulling the regression estimate f(x) towards
the measurements, yi. It can be seen in Fig. 4, that SVs are depicted
as points lying on the surface of the tube and the regression func-
tion can be fully characterized by these support vectors. Owing to
this characteristic the final regression model can be defined with
the help of relatively small numbers of input vectors. These SVs,
xi and the corresponding non-zero Lagrange multipliers a and a�i
give the value of weight vector, w followed by the expanded form
of the SVR,

w ¼
XN

i¼1

ðai � a�i Þ/ðxiÞ ð8Þ

f ðx;ai;a�i Þ ¼
XNsv

i¼1

ðai � a�i Þð/ðxiÞ � /ðxjÞÞ þ b ð9Þ

However, for the aforementioned optimization problem Eq. (7) with
the increase in the input dimensions the dimensions in the high
dimensional feature space further increases by many folds and thus
becomes a computationally intractable problem. Such a problem
can be overcome by defining appropriate kernel functions in place
of the dot product of the input vectors in high dimensional feature
space.

Kðxi; xjÞ ¼ ð/ðxiÞ � /ðxjÞÞ ð10Þ

The advantage of a kernel function is that the dot product in the fea-
ture space can now be computed without actually mapping the in-
put vectors, xi into high dimensional feature space. Thus, when
using a kernel function all the necessary computations can be per-
formed implicitly in the input space instead of in the feature space.
Thus, the basic SVR formulation takes following the form,

f ðx;ai;a�i Þ ¼
XNsv

i¼1

ðai � a�i ÞKðxi; xjÞ þ b ð11Þ
Also the bias parameter, b, can be computed by applying Karush–
Kuhn–Tucker (KKT) conditions, which states that at the optimal
solution the product between dual variables and constraints has
to vanish. Thus giving,

b ¼ fyi � ðai � a�i ÞKðx; xiÞ � eg for ai 2 h0;Ci ð12Þ
b ¼ fyi � ðai � a�i ÞKðx; xiÞ þ eg for a�i 2 h0;Ci

where xi and yi, respectively, denote the ith SV and the correspond-
ing target output. There exist several choices of kernel function K
like linear, polynomial and Gaussian radial basis function. The most
commonly used kernel function is the Gaussian radial basis function
(RBF) (Gunn, 1998; Vapnik et al., 1996).

3.2. Procedure for estimating regression function

In the present study, a SVR-implementation known as ‘‘e-SVR”
in the LIBSVM software library (Chang and Lin, 2001) has been
used to develop the SVR-based model for overall gas hold-up. De-
tailed procedure for estimating regression function can be obtained
from Gandhi et al. (2007a,b).

4. Experimental work

Experiments were carried out in a cylindrical Plexiglass bubble
column of 150 mm internal diameter for the gas–liquid system
with LDA measurements taken for the axial velocity component.
This column was enclosed in another column of square cross-sec-
tion and the space between the two was filled with water to mini-
mize refraction effects. An oil free diaphragm type compressor was
used to sparge air through the spargers. The clear liquid height of



Fig. 6. Variation of recurrence parameters as a function of normalized radial
distance of the column for MPS at Z/D = 1.4.

Fig. 7. Variation of recurrence parameters as a function of normalized radial
distance of the column for SPS at Z/D = 2.6.
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tap water in the cylindrical column was 900 mm. Details about the
LDA measurement locations are mentioned in the Table 1. The LDA
set-up comprised of a Dantec 55X modular series along with elec-
tronic instrumentation and a personal computer (80586). A 5 W Ar-
gon–ion laser was used as a source. The LDA measurements were
carried out at several levels from the sparger. The purpose was to
understand the development of gas hold-up flow profile in the col-
umn and hence it was necessary to acquire the data at different ax-
ial levels, where, z/D = 0 is the sparger. The different values of z/D
chosen in these experiments were mainly because of the height
above the sparger where the measurements could be done without
any obstacles. This issue was important as the measurements were
done in forward scatter mode. More details about the LDA measure-
ments for the system can be found in Kulkarni et al. (2001).

5. Results and discussion

5.1. RQA analysis of LDA time-series

RPs were constructed from the individual LDA time-series
[4096 data points] for the defined set of operating and design
conditions (Table 1). A time delay (s) of 1 was chosen based on Ta-
kens theorem whereas the minimal embedding dimensions (m)
were estimated based on percentage of false nearest neighbors
and they were seen to yield values of 4 and 2 for Multipoint point
sparger and Single point sparger respectively. Threshold was not
allowed to exceed beyond 10% of the maximum phase-space diam-
eter and thereby setting a uniform value of, r = 0.1. Fig. 5 shows a
typical RP constructed from the LDA time series for Multipoint
point sparger. This qualitative pattern of RP is further quantified
by RQA in terms of % REC, % DET, %LAM and Entropy. Figs. 6 and
7 show the plots of the values for each of these quantified param-
eters as a function of normalized radial distance of the bubble col-
umn, for Single point sparger and Multipoint point sparger
respectively. These quantified values are based on the LDA time-
series acquired in the bulk region of the column (Z/D = 1.4 and
2.6 for Multipoint point sparger and Single point sparger, respec-
tively). Comparing the recurrence quantified values for both the
spargers along the column radius; it is observed that for Single
point sparger, relatively higher recurrence is observed in the centre
region of the column, than that for Multipoint point sparger. Such
behaviour is along the lines of the gas hold-up profiles for both the



Fig. 8. Radial variation of fractional gas hold-up for � MPS (Z/D = 1.4), SPS (Z/
D = 2.6).
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spargers. For Single point sparger it is known to have a steep gas
hold-up profile, while that for Multipoint point sparger has a rela-
tively flat profile for the bulk region of the bubble column as shown
in Fig. 8.

5.2. Recurrence quantified parameters based SVR modeling

SVR model for multi point sparger was developed for predicting
the local point gas hold-up. The model was established based on 53
data points and 8 features (VG, r/R, z/D, sparger distribution coeffi-
cient, %REC, %DET, %LAM, ENT) as input vectors. As mentioned
earlier, in the present study, an SVR-implementation known as
‘‘e-SVR” in the LIBSVM software library was used to develop the
SVR-based model. RBF kernel resulted in the least MSE values
and maximum squared CC values for the model. To avoid the pos-
sibility of arbitrary predictions arising out of insufficient training
data, a method known as ‘‘leave-one-out” was used to select an
optimal model. An average of the MSEs corresponding to the left-
out subsets, known as ‘‘loo error (MSEloo)” gives an estimate of
the model performance if a large-sized data set was available for
Table 3
Performance indicators for the SVR-based model for point gas hold-up

Correlation coefficient (CC) Mean square error (MSE)

CCloo = 0.872 MSEloo = 0.00036
CCtrain_model = 0.981 MSEtrain_model = 0.000077
CCtest_model = 0.960 MSEtest_model = 0.000068

Table 2
Parameter selection for SVR-based model for multi point sparger

Model C c ¼ 1
2r2 eloss Number of support

vectors
Number of training
data points

Point gas
hold-up

2 1.21 0.0045 31 53
building the model. After evaluation of the model for a wide range
of model parameters (grid search methodology), the optimal val-
ues of the three SVR-specific parameters namely, width of RBF ker-
nel (r), cost coefficient (C) and loss function parameter (eloss), are
listed in Table 2. The values of CCloo along with the corresponding
MSEloo values for the model are listed in Table 3. Selection of the
optimal model parameters automatically decides the optimal
number of support vectors (31), which play a vital role in the per-
formance of the SVR-based model.

As a part of this work, we also checked as to how well the entire
approach predicts the point gas hold-up values for the conditions
which were not included in the databank for training the model
i.e., test dataset. In all three LDA time-series were used as the test
dataset. These LDA time-series were acquired for Multipoint point
sparger at the superficial gas velocity of 0.012 m/s, at axial location
of Z/D = 1.4 and at three different radial positions of r/R = 0.0, 0.027
and 0.9 respectively. The experimentally measured fraction gas
hold-up values at these three locations are 0.072, 0.071 and
0.042, while the predictions based on our model yields 0.075,
0.074 and 0.04, respectively for the same locations. The difference
between the experimental and the model predictions is less than
5% and hence justify the use of a trained model based on RQA
and SVM for the estimation of the local fractional gas hold-up from
such an analysis.

Appendix B represents the detailed pictorial algorithm for the
aforementioned modeling approach.
6. Conclusion

This work demonstrates the application of recurrence plots and
recurrence quantification analysis (RQA) for detecting recurring
dynamical states, within LDA time-series for bubble column reac-
tors. The point gas hold-up value, which is a function of the bubble
characteristic at the point of measurement, is implicitly related to
the recurrence quantified values.

SVR, a robust machine learning based non-linear modeling
paradigm at various design conditions possessing several desir-
able features was used to establish a non-linear relation between
point gas hold-up and the so obtained recurrence quantified
parameters. The proposed models exhibit reasonably high predic-
tion accuracy and can be used for real-time prediction of point
gas hold-up values. Such SVR-based models for bubble column
can be potentially useful on commercial scale for online monitor-
ing and control of point gas hold-up. The applicability of this tool
for the data for different measurement techniques can be easily
generalized.
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Appendix 1. Detailed mathematical and graphical presentation
of the procedure for the construction of the recurrence plot and
estimation of recurrence parameters

(a) Explicit example of how recurrence plots are constructed is
detailed below for a contrived time-series vector (TS) with 29 ele-
ments.TS = [3.7, 9.2, 2.1, �5.4, 0.0, �10.9, 9.2, 3.1, 1.7, 1.8, �0.3,
�4.9, 2.7, 3.5, 7.5, �9.9, �9.9, �4.7, 1.3, 2.7, 7.6, 3.9, 7.3, 8.0, 0.3,
�1.9, 5.1, 8.8, 8.2]
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(b) For time delay (s) = 8, and embedding dimension (m) = 4, the
following 5 time-delayed vectors are constructed in specified units
(V).

V1 ¼ ½þ3:7;þ1:7;�9:9;þ0:3�

V2 ¼ ½þ9:2;þ1:8;�4:7;�1:9�

V3 ¼ ½þ2:1;�0:3;þ1:3;þ5:1�

V4 ¼ ½�5:4;�4:9;þ2:7;þ8:8�

V5 ¼ ½þ0:0;þ2:7;þ7:6;þ8:2�

(c) Next, the Euclidean distance in the distance matrix (DM) be-
tween vectors V4 and V5 is calculated as follows, DM (4,5).

DMðEuclidÞ ¼ SQRTðSQRð�5:4� 0:0Þ þ SQRð�4:9� 2:7Þ
þ SQRð2:7� 7:6Þ þ SQRð8:8� 8:2ÞÞ
¼ 10:549

This procedure is repeated for each cell, giving the following re-
sults for DM (i,j). Here only the distances in the upper triangle
are shown since the lower half is perfectly symmetrical. Note
that the central diagonal is designated by 0.000 distances (vector
identity matches).

DMðEuclid normÞ ¼
½1; 5� ¼ 19:579; ½2; 5� ¼ 18:405; ½3; 5� ¼ 7:919; ½4;5� ¼ 10:549; ½5; 5� ¼ 0:000

½1; 4� ¼ 18:904; ½2; 4� ¼ 20:671; ½3; 4� ¼ 9:647; ½4; 4� ¼ 0:0000; ½5; 4� ¼ 10:549

½1; 3� ¼ 12:452; ½2; 3� ¼ 11:825; ½3; 3� ¼ 0:000; ½4; 3� ¼ 9:647; ½5; 3� ¼ 7:919

½1; 2� ¼ 7:883; ½2; 2� ¼ 0:0000; ½3; 2� ¼ 11:82; ½4; 2� ¼ 20:671; ½5; 2� ¼ 18:405

½1; 1� ¼ 0:000; ½2; 1� ¼ 7:883; ½3; 1� ¼ 12:4; ½4; 1� ¼ 18:90; ½5; 1� ¼ 19:579
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(d) Recurrence matrices RM [i, j] and thereafter the recurrence
plots, RPs are derived from distance matrices by setting a radius
(r) threshold. As shown below, the Heaviside function assigns val-
ues of 0 or 1 to array elements. Only those distances in RM [i, j]
equal to or less than the radius (r) are defined as recurrent points
at coordinates i, j.

RMðEuclid norm with RADIUS of 8:0Þ ¼
½1; 5� ¼ 0; ½2; 5� ¼ 0; ½3; 5� ¼ 1; ½4; 5� ¼ 0; ½5; 5� ¼ 1
½1; 4� ¼ 0; ½2; 4� ¼ 0; ½3; 4� ¼ 0; ½4; 4� ¼ 1; ½5; 4� ¼ 0
½1; 3� ¼ 0; ½2; 3� ¼ 0; ½3; 3� ¼ 1; ½4; 3� ¼ 0; ½5; 3� ¼ 1
½1; 2� ¼ 1; ½2; 2� ¼ 1; ½3; 2� ¼ 0; ½4; 2� ¼ 0; ½5; 2� ¼ 0
½1; 1� ¼ 1; ½2; 1� ¼ 1; ½3; 1� ¼ 0; ½4; 1� ¼ 0; ½5; 1� ¼ 0
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Thus, based on the so obtained RM [i,j], the single dot, diagonal
and vertical horizontal lines structure, also known as recurrence
plot (RP) is generated. We would like to indicate that ‘0’ are indi-
cated by black color and ‘1’ to be indicated by white color in the
RPs. Thus, the white colored single dot, diagonal and vertical hor-
izontal lines structure show the extent of recurrence within the
RPs.

A typical, RP is shown below having, (1) A line segment com-
posed of four recurrent points, (2) several recurrent points not
the part of the line segment, (3) A line segment composed of four
points representing laminarity, (4) the identity line,
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(e) RQA looks for patterns among these recurrent points of RM
[i,j], to define the RQA variables: % recurrence, % determinism, entro-
py and % laminarity. Further details about the calculation of these
parameters are given in Section 2.2, ‘Determining parameters for
RQA’ of the paper.
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Appendix 2. Detailed algorithm representing the entire modeling approach
Multi resolution analysis of LDA time series

(Kulkarniet al. (2001))

LDA time series at multiple locations, different design & operating conditions within bubble column reactor
    

Recurrence Quantification Analysis (RQA) 

1) % Recurrence, 2) % Determinism, 3) %Laminarity, 4) Entropy

Support Vector Regression (SVR) based model for the 

prediction of  the point gas hold-up    

Point gas hold-up values for bubble column    

reactor obtained through experiments   

Prediction of the point gas hold-up values for bubble column  reactor using SVR-based model   

Recurrence Analysis  

        

Recurrence Parameters

SVR Modeling Target Values

 

Prediction

Recurrence Plots 
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